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1. INTRODUCTION

A good scheme for the numerical solution [1] of the di!erential equation of motion must be,
at least globally, energy preserving. A computational scheme that conceals a numerically
engendered energy sink or spurious viscosity will suck energy out of, an otherwise
conservative, periodically moving system driving down the amplitude into exponential
demise. On the other hand, a numerical integration scheme that harbours a spurious energy
source will pump phantom energy into the system fueling an explosive growth in the
amplitude and an early numerical catastrophic end to the computation. Computational
phase errors have a cumulative, long-term e!ect of placing the computed body at a wrong,
and ever more doubtful, position within its orbit, a numerical aberration that could
seriously compromise the usefulness of such a scheme for long-term computations as of
planetary motion.

It is the purpose of this note to present an explicit numerical integration scheme for the
solution of linear as well as non-linear second order initial value problems, that at least for
a standard simple model, preserves cyclic energy and the period of motion.

The price to pay for period conservation is in some coe$cients being time-step
dependent.

2. LINEAR PREDICTION

Consider the initial value problem x@"!y, y@"x, x
0
"x (0)"1, y

0
"y (0)"0, where

x"x(t), y"y (t), t'0, and where ( )@ means di!erentiation with respect to time t. This
initial value problem, that coincides with the single second order problem xA#x"0,
x(0)"1, x@ (0)"0, is solved by x"cos t, y"sin t representing a constant circular motion of
period ¹"2p.

We propose to solve the initial value problem with the explicit scheme
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in which q is the time step, where x
1
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1
"y(q), approximately, and with the

coe$cients a
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, a
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to be determined by stability and accuracy considerations.

With x@"!y, y@"x, system (1) becomes
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that explicitly produces x
1
and y

1
out of x

0
and y

0
, and then x

2
and y
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out of x
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, and

so on up to x
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and y
n
. System (2) is solved by x
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for the magni"cation

factor z that satis"es the pair of linear equations
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for any x
0

and y
0
. Equation (3) is recast in matrix form to become
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and the condition for it to have a non-trivial solution is that its determinant be zero, leading
to the characteristic equation
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for z. The periodic nature of the solution to the initial value problems dictates that z be
complex. Let Dz D be the modulus of complex z. If Dz D(1, then Dz DnP0 as nPR, and if
Dz D'1, then Dz DnPR as nPR. To avoid these undesirable eventualities of an arti"cial
energy sink and an arti"cial energy source we select a

0
"0 in equation (2), and are left with

the characteristic equation
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that possesses two complex roots z
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such that z
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In fact,
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where i2"!1, and z is complex if
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By the fact that D z D"1, the complex solutions to equation (6) can be written as
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with

cos h"1!1
2
a
1
q2, sin h"qJa

1
!1

4
a2
1
q2. (10)

Now, x
n

and y
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are generally written as
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determined by the initial conditions. Given x
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0
"0 we get from

equation (2) x
1
"1, y
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and y
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in equation (11) for n"0 and 1 we obtain
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the two systems of linear equations
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readily solved for c
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in which z
1
"cos h!i sin h, z
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"cos h#i sin h, z
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1
"2i sin h. Writing z
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terms of h reshapes equation (11) into the form
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We have from equation (13) that
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with which we "nally get
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as the general numerical solution to our initial value problem.

3. PERIOD PRESENTATION

A cycle is completed when sin nh"0 or nh"2p. Then, according to equation (16) y
n
"0

and x
n
"1. From qnh"2pq and ¹"nq we obtain the computed period as

¹"2n(q/h) (17)

and to retain ¹"2p we select a
1

in equation (1) so as to guarantee q"h or sin q"sin h.
This condition becomes, in view of equation (10),
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leading to the quadratic equation
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if q is small.
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Figure 1(a) describes a uniform lunar motion computed by scheme (2) with a
0
"0 and

a
1
"a given in equation (20) for q"2q/90. The approximate nature of the computation

manifests itself by an apparent wobbling of the moon in and out of its theoretically perfectly
circular orbit, yet the moon seems to be exactly in the same computed spot period after
Figure 1. Computed location of a planet moving in a theoretically circular orbit of period ¹"2p: (a) linear
prediction, q"2p/90, a"0)999594, 124 periods; (b) linear prediction q"2p/90, a"0)999, 8 periods; (c) quadratic
prediction q"2p/90, a"0)99918782, 124 periods. Asterisk marks the last computed position.



Figure 1. Continued.
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period. The last computed position of the moon after 124 periods is marked by an asterisk
that appears to accurately fall at x"1, y"0.

Figure 1(b) shows the results of the same computation done now with a"a
1
"0)999

which is slightly less than the value suggested by equation (20). A small apparent
retardation is noticed for the moon that fails to reach now the position it occupied in the
previous cycle.

4. QUADRATIC PREDICTION

Inclusion of the acceleration in the prediction for x
1

suggests the higher order scheme

x
1
"x

0
#qx@

0
#1

2
q2xA

0
, y

1
"y

0
#1

2
q (a

0
y@
0
#a

1
y@
1
). (22)

that becomes for x@"!y, y@"x, xA"!x:
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Substitution of x
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"zx
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, y

1
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0
into equation (23) results in the system
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from which we obtain the quadratic characteristic equation
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for magni"cation factor z. To assure D z D"1 for the complex roots of equation (25) we set
a
0
"1 and are left with

z2#2(!1#1
4
q2b)z#1"0, (26)

where b"1#a
1
. The two roots of equation (26) are
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4
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and z is complex if

b'0, 8!q2b'0. (28)

Because Dz D"1 we may write the complex roots of equation (26) as
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4
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2
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According to the analysis of section 2 the numerical scheme is period conserving if q"h or
sin h"sin q. This is assured, according to equation (29), if b is such that
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resulting in
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if q is small.
Figure 1(c) shows the results of computation done with this higher order scheme for

a"a
1
"b!1 for b given in equation (32). The spurious periodic wobbling of the moon

visually disappeared and the motion is also otherwise apparently perfectly periodic.
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